Enhanced and Proficient Soft Template Array of Polyaniline-TiO 2 Nanocomposites Fibers Prepared Using Anionic Surfactant for Fuel Cell Hydrogen Storage.
Nacer BadiAashis S RoyHatem A Al-AohMohamed S MotaweaSaleh A AlghamdiAbdulrhman M AlsharariAbdulrahman S AlbaqamiAlex IgnatievPublished in: Polymers (2023)
Porous TiO 2 -doped polyaniline and polyaniline nanocomposite fibers prepared by the in situ polymerization technique using anionic surfactant in an ice bath were studied. The prepared nanocomposites were characterized by FTIR spectroscopy and XRD patterns for structural analysis. The surface morphology of the polyaniline and its nanocomposites was examined using SEM images. DC conductivity shows the three levels of conductivity inherent in a semiconductor. Among the nanocomposites, the maximum DC conductivity is 5.6 S/cm for 3 wt.% polyaniline-TiO 2 nanocomposite. Cyclic voltammetry shows the properties of PANI due to the redox peaks of 0.93 V and 0.24 V. Both peaks are due to the redox transition of PANI from the semiconductor to the conductive state. The hydrogen absorption capacity is approximately 4.5 wt.%, but at 60 °C the capacity doubles to approximately 7.3 wt.%. Conversely, 3 wt.% PANI-TiO 2 nanocomposites have a high absorption capacity of 10.4 wt.% compared to other nanocomposites. An overall desorption capacity of 10.4 wt.% reduced to 96% was found for 3 wt.% TiO 2 -doped PANI nanocomposites.