Applications of Bioengineered 3D Tissue and Tumor Organoids in Drug Development and Precision Medicine: Current and Future.
Mahesh DevarasettyAndrea R MazzocchiAleksander SkardalPublished in: BioDrugs : clinical immunotherapeutics, biopharmaceuticals and gene therapy (2018)
Over the past decade, advances in biomedical and tissue engineering technologies, such as cell culture techniques, biomaterials, and biofabrication, have driven increasingly widespread use of three-dimensional (3D) cell culture platforms and, subsequently, the use of organoids in a variety of research endeavors. Given the 3D nature of these organoid systems, and the frequent inclusion of extracellular matrix components, these constructs typically have more physiologically accurate cell-cell and cell-matrix interactions than traditional 2D cell cultures. As a result, 3D organoids can serve as better model systems than their 2D counterparts. Moreover, as organoids can be biofabricated from highly functional human cells, they have certain advantages over animal models, being human in nature and more easily manipulated in the laboratory. In this review, we describe such organoid technologies and their deployment in drug development and precision medicine efforts. Organoid technologies are rapidly being developed for these applications and now represent a wide variety of tissue types and diseases. Evidence is emerging that organoids are poised for widespread adoption, not only in academia but also in the pharmaceutical industry and in clinical diagnostic applications, positioning them as indispensable tools in medicine.