Login / Signup

EDTA-assisted phytoextraction of lead and cadmium by Pelargonium cultivars grown on spiked soil.

Iram GulMaria ManzoorJerome SilvestreMuhammad RizwanKiran HinaJean KallerhoffMuhammad Arshad
Published in: International journal of phytoremediation (2019)
The aim of this study was to assess EDTA-assisted Pb and Cd phytoextraction potential of locally grown Pelargonium hortorum and Pelargonium zonale. Plants were exposed to different levels of Pb (0-1500 mg kg-1) and Cd (0-150 mg kg-1) in the absence or presence of EDTA (0-5 mmol kg-1). P. hortorum and P. zonale accumulated 50.9% and 42.2% higher amount of Pb in shoots at 1500 mg kg-1 Pb upon addition of 5 mmol kg-1 EDTA. Plant dry biomass decreased 46.8% and 64.3% for P. hortorum and P. zonale, respectively at the combination of 1500 mg kg-1 Pb and 5 mmol kg-1 EDTA. In Cd and EDTA-treated groups, P. hortorum and P. zonale accumulated 2.7 and 1.6-folds more Cd in shoots at 4 and 2 mmol kg-1 EDTA, respectively, in 150 mg Cd kg-1 treatment. Plant dry biomass of P. hortorum and P. zonale was reduced by 46.3% and 71.3%, respectively, in soil having 150 mg Cd kg-1 combined with 5 mmol kg-1 EDTA. Translocation factor and enrichment factor of both plant cultivars at all treatment levels were >1. Overall, the performance of P. hortorum was better than that of P. zonale for EDTA-assisted phytoextraction of Pb and Cd.
Keyphrases
  • heavy metals
  • risk assessment
  • climate change
  • combination therapy
  • smoking cessation