Fabrication of Color Glass by Pearlescent Pigments and Dissolved EVA Film.
Seongmin LimHyeon-Sik AhnAkpeko GasonooJae-Hyun LeeYoonseuk ChoiPublished in: Materials (Basel, Switzerland) (2022)
In this paper, we propose a single-layer thin-film color glass manufacturing process for building-integrated photovoltaics (BIPV) with excellent aesthetics and high transmittance, through a solution process using pearlescent pigments. As a matrix for the color solution, ethylene vinyl acetate (EVA), which serves as an encapsulant and adhesive for the photovoltaic module (PV), was dissolved and used as a matrix for the color solution. The color glass produced is excellent in securing the aesthetics of buildings, has a high transmittance of 90% or more, outputs a maximum solar power generation efficiency of 91% from a solar cell, and can minimize the deterioration of power generation efficiency. In addition, the characteristics do not change over time, so it is suitable as color glass for BIPV. Through this study, the solution-based color glass manufacturing process for BIPV using dissolved EVA as a matrix forms a single-layer thin film with good color extensions. The choice of EVA as a matrix makes it possible for color glass to be easily attached to a solar panel using a heat press method. This proposed technique makes it easier and simpler to manufacture color glass as compared to the physical vapor deposition process. The adoption of this solution process technique to fabricate pearlescent pigment-based color glass can effectively reduce the time and cost of the process, so it is expected to be applied to the low-cost BIPV market with excellent aesthetics and high transmittance.
Keyphrases