Login / Signup

Multiparticle orientational correlations are responsible for the nonlinear dielectric effect: Analysis of temperature-dependent measurements for glycerol.

Dmitry V Matyushov
Published in: The Journal of chemical physics (2022)
The nonlinear dielectric effect (NDE) is traditionally viewed as originating from saturation of the response of individual dipoles in a strong electric field. This mean-field view, mathematically described by the Langevin saturation function, predicts enhanced dielectric saturation at lower temperatures. In contrast, recent experiments for glycerol have shown a sharp increase of the NDE with increasing temperature. The formalism presented here splits the NDE into a sum of a term representing binary correlations of dipolar orientations and terms referring to three- and four-particle orientational correlations. Analysis of experimental data shows that the contribution of three- and four-particle correlations strongly increases at elevated temperatures. The mean-field picture of dielectric saturation as the origin of the NDE is inconsistent with observations. A positive NDE (increment of the field-dependent dielectric constant) is predicted for low-concentration solutions of polar molecules in nonpolar solvents. The dependence of the NDE on the concentration of the polar component is polynomial.
Keyphrases
  • ionic liquid
  • electronic health record
  • gestational age