Fine-Tuning the Electrocatalytic Regeneration of NADH Cofactor Using [Rh(Cp*)(bpy)Cl] + -Functionalized Metal-Organic Framework Films.
Weiwei LiChunhua ZhangZiman ZhengXiaoyu ZhangLin ZhangAlexander KuhnPublished in: ACS applied materials & interfaces (2022)
Electrochemical regeneration of the reduced form of the nicotinamide adenine dinucleotide (NADH) cofactor catalyzed by immobilized [Rh(Cp*)(bpy)Cl] + is a promising approach for the enzymatic synthesis of many valuable chemicals with NAD-dependent dehydrogenases. However, rational control of the efficiency is often limited by the irregular structure of the electrode/electrolyte interface and the accessibility of the molecular catalyst. Here, we propose an electrochemical system for NADH cofactor regeneration, based on highly ordered three- dimensional (3D) metal-organic framework (NU-1000) films. [Rh(Cp*)(bpy)Cl] + is incorporated at the zirconium nodes of NU-1000 via solvent-assisted ligand incorporation (SALI), leading to a diffusion-controlled behavior, associated with an electron hopping mechanism. Varying the ratio of redox-active [Rh(Cp*)(bpy)Cl] + and inactive postgrafting agents enables the elaboration of functional electrodes with tunable electrocatalytic activity for NADH regeneration. The exceptionally high faradic efficiency of 97%, associated with a very high turnover frequency (TOF) of ∼1400 h -1 for NADH regeneration, and the total turnover number (TTN) of over 20000 for the enzymatic conversion from pyruvate to l-lactate, when coupled with l-lactate dehydrogenases (LDH) as a model reaction, open up promising perspectives for employing these electrodes in various alternative bioelectrosynthesis approaches.
Keyphrases
- metal organic framework
- stem cells
- ionic liquid
- room temperature
- reduced graphene oxide
- gold nanoparticles
- carbon nanotubes
- wound healing
- mass spectrometry
- solid state
- ms ms
- squamous cell carcinoma
- molecularly imprinted
- bone mineral density
- electron transfer
- air pollution
- single molecule
- minimally invasive
- lymph node
- nitric oxide
- locally advanced