Login / Signup

MIF versus SIF Motoneurons, What Are Their Respective Contribution in the Oculomotor Medial Rectus Pool?

Génova Carrero-RojasRosendo G HernándezRoland BlumerRosa R de la CruzAngel M Pastor
Published in: The Journal of neuroscience : the official journal of the Society for Neuroscience (2021)
Multiply-innervated muscle fibers (MIFs) are peculiar to the extraocular muscles as they are non-twitch but produce a slow build up in tension on repetitive stimulation. The motoneurons innervating MIFs establish en grappe terminals along the entire length of the fiber, instead of the typical en plaque terminals that singly-innervated muscle fibers (SIFs) motoneurons establish around the muscle belly. MIF motoneurons have been proposed to participate only in gaze holding and slow eye movements. We aimed to discern the function of MIF motoneurons by recording medial rectus motoneurons of the oculomotor nucleus. Single-unit recordings in awake cats demonstrated that electrophysiologically-identified medial rectus MIF motoneurons participated in different types of eye movements, including fixations, rapid eye movements or saccades, convergences, and the slow and fast phases of the vestibulo-ocular nystagmus, the same as SIF motoneurons did. However, MIF medial rectus motoneurons presented lower firing frequencies, were recruited earlier and showed lower eye position (EP) and eye velocity (EV) sensitivities than SIF motoneurons. MIF medial rectus motoneurons were also smaller, had longer antidromic latencies and a lower synaptic coverage than SIF motoneurons. Peristimulus time histograms (PSTHs) revealed that electrical stimulation to the myotendinous junction, where palisade endings are located, did not recurrently affect the firing probability of medial rectus motoneurons. Therefore, we conclude there is no division of labor between MIF and SIF motoneurons based on the type of eye movement they subserve.SIGNIFICANCE STATEMENT In addition to the common singly-innervated muscle fiber (SIF), extraocular muscles also contain multiply-innervated muscle fibers (MIFs), which are non-twitch and slow in contraction. MIF motoneurons have been proposed to participate only in gaze holding and slow eye movements. In the present work, by single-unit extracellular recordings in awake cats, we demonstrate, however, that both SIF and MIF motoneurons, electrophysiologically-identified, participate in the different types of eye movements. However, MIF motoneurons showed lower firing rates (FRs), recruitment thresholds, and eye-related sensitivities, and could thus contribute to the fine adjustment of eye movements. Electrical stimulation of the myotendinous junction activates antidromically MIF motoneurons but neither MIF nor SIF motoneurons receive a synaptic reafferentation that modifies their discharge probability.
Keyphrases
  • skeletal muscle
  • spinal cord injury
  • healthcare
  • coronary artery disease
  • single cell
  • health insurance