Login / Signup

Evaluating person-centered factors associated with brain-computer interface access to a commercial augmentative and alternative communication paradigm.

Kevin M PittJonathan S Brumberg
Published in: Assistive technology : the official journal of RESNA (2021)
Current BCI-AAC systems largely utilize custom-made software and displays that may be unfamiliar to AAC stakeholders. Further, there is limited information available exploring the heterogenous profiles of individuals who may use BCI-AAC. Therefore, in this study, we aimed to evaluate how individuals with amyotrophic lateral sclerosis (ALS) learned to control a motor-based BCI switch in a row-column AAC scanning pattern, and person-centered factors associated with BCI-AAC performance. Four individuals with ALS completed 12 BCI-AAC training sessions, and three individuals without neurological impairment completed 3 BCI-AAC training sessions. To assess person-centered factors associated with BCI-AAC performance, participants completed both initial and recurring assessment measures including levels of cognition, motor ability, fatigue, and motivation. Three of four participants demonstrated either BCI-AAC performance in the range of neurotypical peers, or an improving BCI-AAC learning trajectory. However, BCI-AAC learning trajectories were variable. Assessment measures revealed that two participants presented with a suspicion for cognitive impairment yet achieved the highest levels of BCI-AAC accuracy with their increased levels of performance being possibly supported by largely unimpaired motor skills. Motor-based BCI switch access to a commercial AAC row-column scanning may be feasible for individuals with ALS and possibly supported by timely intervention.
Keyphrases
  • amyotrophic lateral sclerosis
  • cognitive impairment
  • healthcare
  • high resolution
  • depressive symptoms
  • blood brain barrier
  • deep learning
  • functional connectivity
  • simultaneous determination