In vivo protective efficacy of astaxanthin against ionizing radiation-induced DNA damage.
Dilek Aşcı ÇelikVehbi Atahan ToğayPublished in: Chemical biology & drug design (2023)
Astaxanthin, a carotenoid pigment, is believed to be effective in the repair of DNA damage. Our study evaluates the effect of astaxanthin on DNA damage in rats exposed to whole-body radiotherapy using the comet assay. Thirty-two male rats were randomly divided into four groups (control, ionizing radiation, astaxanthin, and radiation+astaxanthin). The radiation and radiation+astaxanthin groups were exposed to X-rays at a dose of 8 gray (0.62 gray/min). Astaxanthin was administered at 4 mg/kg by gavage for 7 days starting from irradiation. The %TailDNA parameter was chosen as an indicator of DNA damage and the results were compared using one-way ANOVA. %TailDNA was 3.24 ± 3.12 in the control group, 2.85 ± 2.73 in the astaxanthin group, 4.11 ± 7.90 in the radiation group, and 3.59 ± 4.05 in the radiation+astaxanthin group. There was a significant increase in DNA damage in the radiation group, compared with the control and astaxanthin groups (p < .001). DNA damage was reduced in the radiation+astaxanthin group compared with the radiation group (p < .05). Although this decrease did not reduce damage to the level of the control group, it was significant. The decrease in radiation-induced DNA damage by astaxanthin administration in our study supports the hypothesis that astaxanthin is a promising agent for against/reducing DNA damage.