One-Pot Asymmetric Synthesis of Spiropyrazolone-Linked Cyclopropanes and Benzofurans through a General Michael Addition/Chlorination/Nucleophilic Substitution Sequence.
Hong LuHuan-Xin ZhangChang-Yin TanJin-Yu LiuHao WeiPeng-Fei XuPublished in: The Journal of organic chemistry (2019)
A sequential and general strategy has been successfully developed for the synthesis of spiropyrazolone scaffolds. This intriguing transformation of the asymmetric multicomponent catalysis process was realized with the combination of Michael addition/chlorination/nucleophilic substitution in a one-pot sequence, giving rise to a series of spiropyrazolones with fully substituted cyclopropanes and spiro-dihydrobenzofurans containing continuous stereogenic centers in good yields with excellent stereoselectivities.