Dual Ruthenium-Catalyzed Alkene Isomerization-Hydrogen Auto-Transfer Unlocks Skipped Dienes as Pronucleophiles for Enantioselective Alcohol C-H Allylation.
Zachary J DubeyWeijia ShenJohn A LittleMichael J KrischePublished in: Journal of the American Chemical Society (2023)
The first use of 1,4-pentadiene and 1,5-hexadiene as allylmetal pronucleophiles in regio-, anti -diastereo-, and enantioselective carbonyl addition from alcohol proelectrophiles is described. As corroborated by deuterium labeling experiments, primary alcohol dehydrogenation delivers a ruthenium hydride that affects alkene isomerization to furnish a conjugated diene, followed by transfer hydrogenative carbonyl addition. Hydrometalation appears to be assisted by the formation of a fluxional olefin-chelated homoallylic alkylruthenium complex II , which exists in equilibrium with its pentacoordinate η 1 form to enable β-hydride elimination. This effect confers remarkable chemoselectivity: while 1,4-pentadiene and 1,5-hexadiene are competent pronucleophiles, higher 1, n -dienes are not, and the olefinic functional groups of the products remain intact under conditions in which the 1,4- and 1,5-dienes isomerize. A survey of halide counterions reveals iodide-bound ruthenium-JOSIPHOS catalysts are uniquely effective in these processes. This method was used to prepare a previously reported C1-C7 substructure of (-)-pironetin in 4 vs 12 steps.