Login / Signup

Doses for experiments with microbeams and microcrystals: Monte Carlo simulations in RADDOSE-3D.

Joshua L DickersonElspeth F Garman
Published in: Protein science : a publication of the Protein Society (2020)
Increasingly, microbeams and microcrystals are being used for macromolecular crystallography (MX) experiments at synchrotrons. However, radiation damage remains a major concern since it is a fundamental limiting factor affecting the success of macromolecular structure determination. The rate of radiation damage at cryotemperatures is known to be proportional to the absorbed dose, so to optimize experimental outcomes, accurate dose calculations are required which take into account the physics of the interactions of the crystal constituents. The program RADDOSE-3D estimates the dose absorbed by samples during MX data collection at synchrotron sources, allowing direct comparison of radiation damage between experiments carried out with different samples and beam parameters. This has aided the study of MX radiation damage and enabled prediction of approximately when it will manifest in diffraction patterns so it can potentially be avoided. However, the probability of photoelectron escape from the sample and entry from the surrounding material has not previously been included in RADDOSE-3D, leading to potentially inaccurate does estimates for experiments using microbeams or microcrystals. We present an extension to RADDOSE-3D which performs Monte Carlo simulations of a rotating crystal during MX data collection, taking into account the redistribution of photoelectrons produced both in the sample and the material surrounding the crystal. As well as providing more accurate dose estimates, the Monte Carlo simulations highlight the importance of the size and composition of the surrounding material on the dose and thus the rate of radiation damage to the sample. Minimizing irradiation of the surrounding material or removing it almost completely will be key to extending the lifetime of microcrystals and enhancing the potential benefits of using higher incident X-ray energies.
Keyphrases
  • monte carlo
  • oxidative stress
  • high resolution
  • big data
  • electronic health record
  • density functional theory
  • mass spectrometry
  • skeletal muscle
  • risk assessment
  • machine learning
  • metabolic syndrome