Increase in Autoantibodies-Abzymes with Peroxidase and Oxidoreductase Activities in Experimental Autoimmune Encephalomyelitis Mice during the Development of EAE Pathology.
Anna S TolmachevaKseniya S AulovaAndrey E UrusovIrina A OrlovskayaGeorgy A NevinskyPublished in: Molecules (Basel, Switzerland) (2021)
The exact mechanisms of multiple sclerosis (MS) development are still unknown, but the development of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice is associated with the violation of bone marrow hematopoietic stem cells (HSCs) differentiation profiles associated with the production of harmful for human's autoantibodies hydrolyzing myelin basic protein, myelin oligodendrocyte glycoprotein (MOG35-55), and DNA. It was shown that IgGs from the sera of healthy humans and autoimmune patients oxidize many different compounds due to their H2O2-dependent peroxidase and oxidoreductase activity in the absence of H2O2. Here we first analyzed the change in the relative redox activities of IgGs antibodies from the blood of C57BL/6 mice over time at different stages of the EAE development. It was shown that the peroxidase activity of mice IgGs in the oxidation of ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) is on average 6.9-fold higher than the oxidoreductase activity. The peroxidase activity of IgGs increased during the spontaneous development of EAE during 40 days, 1.4-fold. After EAE development acceleration due to mice immunization with MOG35-55 (5.3-fold), complexes of bovine DNA with methylated bovine serum albumin (DNA-metBSA; 3.5-fold), or with histones (2.6-fold), the activity was increased much faster. The increase in peroxidase activity after mice immunization with MOG35-55 and DNA-metBSA up to 40 days of experiments was relatively gradual, while for DNA-histones complex was observed its sharp increase at the acute phase of EAE (14-20 days). All data show that IgGs' redox activities can play an important role in the protection of mice from toxic compounds and oxidative stress.
Keyphrases
- high fat diet induced
- multiple sclerosis
- bone marrow
- stem cells
- hydrogen peroxide
- circulating tumor
- oxidative stress
- single molecule
- cell free
- mesenchymal stem cells
- mass spectrometry
- dna damage
- end stage renal disease
- cell therapy
- chronic kidney disease
- insulin resistance
- newly diagnosed
- skeletal muscle
- ms ms
- adipose tissue
- ischemia reperfusion injury
- deep learning
- amino acid
- small molecule
- molecular dynamics
- density functional theory
- drug induced
- electron transfer