Login / Signup

Effect of Long-Term of He-Ne Laser Light Irradiation on Selected Physiological Processes of Triticale.

Katarzyna MożdżeńBeata Barabasz-KrasnyPeiman Zandi
Published in: Plants (Basel, Switzerland) (2020)
In agriculture, the bio-stimulating properties of laser light increase the yielding capacity of crop species. The experiment aimed to determine the pre-sowing effect of irradiation time with laser He-Ne red light of triticale grains (×Triticosecale Wittm. ex A.Camus) on germination and selected morphological and physiological parameters of seedlings and plants grown from them. The highest values of germination indexes were found for grains irradiated with laser for 3 h. In relation to the control, the elongation growth of seedlings was stimulated in grains irradiated with light for 3 h and inhibited for 24 h. The values of the fresh and dry mass of seedlings changed depending on the exposure time. He-Ne light did not significantly affect the degree of destabilization of seedling cell membranes. Biometric analysis of plants grown from irradiated grains showed different reactions of triticale organs to the irradiation time. Red light clearly stimulated the increase in the value of organ mass. Chlorophyll content in leaves was higher in plants grown from grains irradiated for 3 h. Photosynthetic activity did not change significantly relative to the control. The fluorescence emission indexes were mostly lower than in the control, which indicated a positive effect of the laser. In general, the red light of the laser stimulated the morphology and physiology of seedlings and plants, although, for some features, long exposure to red light caused a slight reduction effect.
Keyphrases
  • arabidopsis thaliana
  • high speed
  • climate change
  • cell therapy
  • single cell
  • mass spectrometry
  • mesenchymal stem cells
  • single molecule
  • radiation induced
  • high resolution