Login / Signup

Improved Synthesis of Hollow Fiber SSZ-13 Zeolite Membranes for High-Pressure CO 2 /CH 4 Separation.

Xingyu PengLingjie ChenLekai YouYang JinChun ZhangShengyuan RenFreek KapteijnXuerui WangXuehong Gu
Published in: Angewandte Chemie (International ed. in English) (2024)
High-silica CHA zeolite membranes are highly desired for natural gas upgrading because of their separation performance in combination with superior mechanical and chemical stability. However, the narrow synthesis condition range significantly constrains scale-up preparation. Herein, we propose a facile interzeolite conversion approach using the FAU zeolite to prepare SSZ-13 zeolite seeds, featuring a shorter induction and a longer crystallization period of the membrane synthesis on hollow fiber substrates. The membrane thickness was constant at ~3 μm over a wide span of synthesis time (24-96 h), while the selectivity (separation efficiency) was easily improved by extending the synthesis time without compromising permeance (throughput). At 0.2 MPa feed pressure and 303 K, the membranes showed an average CO 2 permeance of (5.2±0.5)×10 -7  mol m -2  s -1  Pa -1 (1530 GPU), with an average CO 2 /CH 4 mixture selectivity of 143±7. Minimal defects ensure a high selectivity of 126 with a CO 2 permeation flux of 0.4 mol m -2  s -1 at 6.1 MPa feed pressure, far surpassing requirements for industrial applications. The feasibility for successful scale-up of our approach was further demonstrated by the batch synthesis of 40 cm-long hollow fiber SSZ-13 zeolite membranes exhibiting CO 2 /CH 4 mixture selectivity up to 400 (0.2 MPa feed pressure and 303 K) without using sweep gas.
Keyphrases
  • room temperature
  • molecularly imprinted
  • risk assessment
  • metal organic framework
  • wastewater treatment
  • gold nanoparticles
  • optical coherence tomography
  • highly efficient
  • carbon dioxide