Login / Signup

Inter-spike mitochondrial Ca2+ release enhances high frequency synaptic transmission.

Che Ho YangKyu-Hee LeeWon-Kyung HoSuk-Ho Lee
Published in: The Journal of physiology (2020)
Emerging evidence indicates that mitochondrial Ca2+ buffering contributes to local regulation of synaptic transmission. It is unknown, however, whether mitochondrial Ca2+ release (MCR) occurs during high frequency synaptic transmission. Confirming the previous notion that 2 μm tetraphenylphosphonium (TPP+ ) is a specific inhibitor of the mitochondrial Na+ /Ca2+ exchanger (mNCX), we studied the role of MCR via mNCX in short-term plasticity during high frequency stimulation (HFS) at the calyx of Held synapse of the rat. TPP+ reduced short-term facilitation (STF) and steady state excitatory postsynaptic currents during HFS at mature calyx synapses under physiological extracellular [Ca2+ ] ([Ca2+ ]o  = 1.2 mm), but not at immature calyx or at 2 mm [Ca2+ ]o . The inhibitory effects of TPP+ were stronger at synapses with morphologically complex calyces harbouring many swellings and at 32°C than at simple calyx synapses and at room temperature. These effects of TPP+ on STF were well correlated with those on the presynaptic mitochondrial [Ca2+ ] build-up during HFS. Mitochondrial [Ca2+ ] during HFS was increased by TPP+ at mature calyces under 1.2 mm [Ca2+ ]o , and further enhanced at 32°C, but not under 2 mm [Ca2+ ]o or at immature calyces. The close correlation of the effects of TPP+ on mitochondrial [Ca2+ ] with those on STF suggests that mNCX contributes to STF at the calyx of Held synapses. The intra-train MCR enhanced vesicular release probability without altering global presynaptic [Ca2+ ]. Our results suggest that MCR during HFS elevates local [Ca2+ ] near synaptic sites at interspike intervals to enhance STF and to support stable synaptic transmission under physiological [Ca2+ ]o .
Keyphrases
  • high frequency
  • oxidative stress
  • protein kinase
  • escherichia coli
  • transcranial magnetic stimulation
  • room temperature
  • multidrug resistant
  • mass spectrometry
  • high resolution
  • ionic liquid