Login / Signup

Facilitating innovation diffusion in social networks using dynamic norms.

Lorenzo ZinoMengbin YeMing Cao
Published in: PNAS nexus (2022)
Dynamic norms have recently emerged as a powerful method to encourage individuals to adopt an innovation by highlighting a growing trend in its uptake. However, there have been no concrete attempts to understand how this individual-level mechanism might shape the collective population behavior. Here, we develop a framework to examine this by encapsulating dynamic norms within a game-theoretic mathematical model for innovation diffusion. Specifically, we extend a network coordination game by incorporating a probabilistic mechanism where an individual adopts the action with growing popularity, instead of the standard best-response update rule; the probability of such an event captures the population's "sensitivity" to dynamic norms. Theoretical analysis reveals that sensitivity to dynamic norms is key to facilitating social diffusion. Small increases in sensitivity reduces the advantage of the innovation over status quo or the number of initial innovators required to unlock diffusion, while a sufficiently large sensitivity alone guarantees diffusion.
Keyphrases
  • healthcare
  • mental health
  • network analysis