Login / Signup

Enantiospecific Desorption Triggered by Circularly Polarized Light.

Farinaz MortahebKatrin OberhoferJohann RiemensbergerFlorian RistowReinhard KienbergerUlrich HeizHristo IglevAras Kartouzian
Published in: Angewandte Chemie (International ed. in English) (2019)
The interest in enantioseparation and enantiopurification of chiral molecules has been drastically increasing over the past decades, since these are important steps in various disciplines such as pharmaceutical industry, asymmetric catalysis, and chiral sensing. By exposing racemic samples of BINOL (1,1'-bi-2-naphthol) coated onto achiral glass substrates to circularly polarized light, we unambiguously demonstrate that by controlling the handedness of circularly polarized light, preferential desorption of enantiomers can be achieved. There are currently no mechanisms known that would describe this phenomenon. Our observation together with a simplified phenomenological model suggests that the process of laser desorption needs to be further developed and the contribution of quantum mechanical processes should be revisited to account for these data. Asymmetric laser desorption provides us with a contamination-free technique for the enantioenrichment of chiral compounds.
Keyphrases