Turnip Mosaic Virus Is a Second Example of a Virus Using Transmission Activation for Plant-to-Plant Propagation by Aphids.
Edwige BerthelotMarie DucoussoJean-Luc MaciaFlorent BogaertVolker BaeckerGaël ThébaudRomain GalletMichel YvonStéphane BlancMounia KhelifaMartin DruckerPublished in: Journal of virology (2019)
Cauliflower mosaic virus (CaMV; family Caulimoviridae) responds to the presence of aphid vectors on infected plants by forming specific transmission morphs. This phenomenon, coined transmission activation (TA), controls plant-to-plant propagation of CaMV. A fundamental question is whether other viruses rely on TA. Here, we demonstrate that transmission of the unrelated turnip mosaic virus (TuMV; family Potyviridae) is activated by the reactive oxygen species H2O2 and inhibited by the calcium channel blocker LaCl3 H2O2-triggered TA manifested itself by the induction of intermolecular cysteine bonds between viral helper component protease (HC-Pro) molecules and by the formation of viral transmission complexes, composed of TuMV particles and HC-Pro that mediates vector binding. Consistently, LaCl3 inhibited intermolecular HC-Pro cysteine bonds and HC-Pro interaction with viral particles. These results show that TuMV is a second virus using TA for transmission but using an entirely different mechanism than CaMV. We propose that TuMV TA requires reactive oxygen species (ROS) and calcium signaling and that it is operated by a redox switch.IMPORTANCE Transmission activation, i.e., a viral response to the presence of vectors on infected hosts that regulates virus acquisition and thus transmission, is an only recently described phenomenon. It implies that viruses contribute actively to their transmission, something that has been shown before for many other pathogens but not for viruses. However, transmission activation has been described so far for only one virus, and it was unknown whether other viruses also rely on transmission activation. Here we present evidence that a second virus uses transmission activation, suggesting that it is a general transmission strategy.