Login / Signup

Heterotypic interaction promotes asymmetric division of human hematopoietic progenitors.

Adrian CandelasBenoit VianayMatthieu GélinLionel FaivreJerome LargheroLaurent BlanchoinManuel ThéryStephane Brunet
Published in: Development (Cambridge, England) (2024)
Hematopoietic stem and progenitor cells (HSPCs) give rise to all cell types of the hematopoietic system through various processes, including asymmetric divisions. However, the contribution of stromal cells of the hematopoietic niches in the control of HSPC asymmetric divisions remains unknown. Using polyacrylamide microwells as minimalist niches, we show that specific heterotypic interactions with osteoblast and endothelial cells promote asymmetric divisions of human HSPCs. Upon interaction, HSPCs polarize in interphase with the centrosome, the Golgi apparatus, and lysosomes positioned close to the site of contact. Subsequently, during mitosis, HSPCs orient their spindle perpendicular to the plane of contact. This division mode gives rise to siblings with unequal amounts of lysosomes and of the differentiation marker CD34. Such asymmetric inheritance generates heterogeneity in the progeny, which is likely to contribute to the plasticity of the early steps of hematopoiesis.
Keyphrases
  • endothelial cells
  • bone marrow
  • solid state
  • single cell
  • high glucose
  • induced pluripotent stem cells
  • gene expression
  • intellectual disability
  • autism spectrum disorder
  • endoplasmic reticulum
  • genome wide