Inflammatory bowel disease (IBD) is characterized by the upregulation of reactive oxygen species (ROS) and dysfunction of gut immune system, and microbiota. The conventional treatments mainly focus on symptom control with medication by overuse of drugs. There is an urgent need to develop a closed-loop strategy that combines in situ monitoring and precise treatment. Herein, we innovatively designed the 'cluster munition structure' theranostic microgels to realize the monitoring and therapy for ulcerative colitis (a subtype of IBD). The superoxide anion specific probe (tetraphenylethylene-coelenterazine, TPC) and ROS-responsive nanogels consisting of postbiotics urolithin A (UA) were loaded into alginate and ion-crosslinked to obtain the theranostic microgels. The theranostic microgels could be delivered to the inflammatory site, where the environment-triggered breakup of the microgels and release of the nanogels were achieved in sequence. The TPC-UA group had optimal results in reducing inflammation, repairing colonic epithelial tissue, and remodeling microbiota, leading to inflammation amelioration and recovery of tight junction between the colonic epithelium, and maintenance of gut microbiota. During the recovery process, the local chemiluminescence intensity, which is proportional to the degree of inflammation, was gradually inhibited. The cluster munition of theranostic microgels displayed promising outcomes in monitoring inflammation and precise therapy, and demonstrated the potential for inflammatory disease management.
Keyphrases
- ulcerative colitis
- oxidative stress
- photodynamic therapy
- reactive oxygen species
- fluorescence imaging
- dna damage
- iron oxide
- cell death
- stem cells
- healthcare
- drug delivery
- cell proliferation
- emergency department
- metabolic syndrome
- blood brain barrier
- cancer therapy
- quantum dots
- risk assessment
- signaling pathway
- nitric oxide
- sensitive detection
- high resolution
- ionic liquid
- combination therapy
- fluorescent probe