Login / Signup

Generation of a Bovine Serum Albumin-Diligand Complex for the Protection of Bioactive Quercetin and Suppression of Heme Toxicity.

Lan ZhouMengjuan LuoRong TianXing-Ping ZengYi-Yuan PengNaihao Lu
Published in: Chemical research in toxicology (2021)
As an abundant protein in milk and blood serum, bovine serum albumin (BSA) contains various sites to bind a lot of bioactive components, generating BSA-monoligand complex. Demonstration of the interaction between BSA and bioactive components (such as heme, flavonoids) is important to develop effective carrier for the protection of bioactive ligands and to reduce cytotoxicity of heme. Herein, the bindings of BSA to quercetin and/or heme were investigated by multispectroscopic and molecular docking methods. The fluorescence of protein was significantly quenched by both quercetin and heme in a static mode (i.e., generation of BSA-ligand complex). Although quercetin had lower affinity to protein than heme, the interactions of both compounds with protein did locate in site I (i.e., subdomain IIA). BSA-diligand complex was successfully generated after the coaddition of quercetin and heme. The cytotoxicity of free heme to endothelial cells was reduced in the BSA-diligand complex relative to that of heme or BSA-monoligand complex, while the stability of bioactive quercetin was promoted in the complex relative to free flavonoid. The complex provided a better inhibition on the cytotoxicity of heme than BSA-monoligand complex, in which the copresence of quercetin played a vital role.
Keyphrases
  • molecular docking
  • endothelial cells
  • protein protein
  • amino acid
  • binding protein
  • molecular dynamics simulations
  • tissue engineering