Yeast Mannan-Rich Fraction Modulates Endogenous Reactive Oxygen Species Generation and Antibiotic Sensitivity in Resistant E. coli .
Helen SmithSharon GrantPaula MeleadyMichael HenryDonal O'GormanMartin ClynesRichard MurphyPublished in: International journal of molecular sciences (2022)
Mannan-rich fraction (MRF) isolated from Saccharomyces cerevisiae has been studied for its beneficial impact on animal intestinal health. Herein, we examined how MRF affected the formation of reactive oxygen species (ROS), impacting antibiotic susceptibility in resistant Escherichia coli through the modulation of bacterial metabolism. The role of MRF in effecting proteomic change was examined using a proteomics-based approach. The results showed that MRF, when combined with bactericidal antibiotic treatment, increased ROS production in resistant E. coli by 59.29 ± 4.03% compared to the control ( p ≤ 0.05). We further examined the effect of MRF alone and in combination with antibiotic treatment on E. coli growth and explored how MRF potentiates bacterial susceptibility to antibiotics via proteomic changes in key metabolic pathways. Herein we demonstrated that MRF supplementation in the growth media of ampicillin-resistant E. coli had a significant impact on the normal translational control of the central metabolic pathways, including those involved in the glycolysis-TCA cycle ( p ≤ 0.05).