Login / Signup

Photoreduction of Graphene Oxide and Photochemical Synthesis of Graphene-Metal Nanoparticle Hybrids by Ketyl Radicals.

Joey Dacula MangadlaoPeng-Fei CaoDiana ChoiRigoberto C Advincula
Published in: ACS applied materials & interfaces (2017)
The photoreduction of graphene oxide (GO) using ketyl radicals is demonstrated for the first time. The use of photochemical reduction through ketyl radicals generated by I-2959 or (1-[4-(2-hydroxyethoxy)phenyl]-2-hydroxy-2-methyl-1-propan-1-one) is interesting because it affords spatial and temporal control of the reduction process. Graphene-metal nanoparticle hybrids of Ag, Au, and Pd were also photochemically fabricated in a one-pot procedure. Comprehensive spectroscopic and imaging techniques were carried out to fully characterize the materials. The nanoparticle hybrids showed promising action for the catalytic degradation of model environmental pollutants, namely, 4-nitrophenol, Rose Bengal, and Methyl Orange. The process described can be extended to polymer nanocomposites that can be photopatterned and could be potentially extended to fabricating plastic electronic devices.
Keyphrases