Login / Signup

The combination of salvianolic acid A with latamoxef completely protects mice against lethal pneumonia caused by methicillin-resistant Staphylococcus aureus.

Dan MuYongxin LuanLin WangZeyuan GaoPanpan YangShisong JingYanling WangHua XiangTiedong WangDacheng Wang
Published in: Emerging microbes & infections (2020)
Staphylococcus aureus (S. aureus), especially methicillin-resistant Staphylococcus aureus (MRSA), is a major cause of pneumonia, resulting in severe morbidity and mortality in adults and children. Sortase A (SrtA), which mediates the anchoring of cell surface proteins in the cell wall, is an important virulence factor of S. aureus. Here, we found that salvianolic acid A (Sal A), which is a natural product that does not affect the growth of S. aureus, could inhibit SrtA activity (IC50 = 5.75 μg/ml) and repress the adhesion of bacteria to fibrinogen, the anchoring of protein A to cell wall, the biofilm formation, and the ability of S. aureus to invade A549 cells. Furthermore, in vivo studies demonstrated that Sal A treatment reduced inflammation and protected mice against lethal pneumonia caused by MRSA. More significantly, full protection (a survival rate of 100%) was achieved when Sal A was administered in combination with latamoxef. Together, these results indicate that Sal A could be developed into a promising therapeutic drug to combat MRSA infections while limiting resistance development.
Keyphrases