Login / Signup

Nuclear Magnetic Resonance Structure of an 8 × 8 Nucleotide RNA Internal Loop Flanked on Each Side by Three Watson-Crick Pairs and Comparison to Three-Dimensional Predictions.

Andrew D KauffmannScott D KennedyJianbo ZhaoDouglas H Turner
Published in: Biochemistry (2017)
The prediction of RNA three-dimensional structure from sequence alone has been a long-standing goal. High-resolution, experimentally determined structures of simple noncanonical pairings and motifs are critical to the development of prediction programs. Here, we present the nuclear magnetic resonance structure of the (5'CCAGAAACGGAUGGA)2 duplex, which contains an 8 × 8 nucleotide internal loop flanked by three Watson-Crick pairs on each side. The loop is comprised of a central 5'AC/3'CA nearest neighbor flanked by two 3RRs motifs, a known stable motif consisting of three consecutive sheared GA pairs. Hydrogen bonding patterns between base pairs in the loop, the all-atom root-mean-square deviation for the loop, and the deformation index were used to compare the structure to automated predictions by MC-sym, RNA FARFAR, and RNAComposer.
Keyphrases
  • magnetic resonance
  • high resolution
  • transcription factor
  • machine learning
  • deep learning
  • magnetic resonance imaging
  • computed tomography
  • pet ct
  • mass spectrometry
  • nucleic acid
  • amino acid
  • high speed