Enhancing Sustainable Analytical Chemistry in Liquid Chromatography: Guideline for Transferring Classical High-Performance Liquid Chromatography and Ultra-High-Pressure Liquid Chromatography Methods into Greener, Bluer, and Whiter Methods.
Sami El DeebPublished in: Molecules (Basel, Switzerland) (2024)
This review is dedicated to sustainable practices in liquid chromatography. HPLC and UHPLC methods contribute significantly to routine analytical techniques. Therefore, the transfer of classical liquid chromatographic methods into sustainable ones is of utmost importance in moving toward sustainable development goals. Among other principles to render a liquid chromatographic method green, the substitution of the organic solvent component in the mobile phase with a greener one received great attention. This review concentrates on choosing the best alternative green organic solvent to replace the classical solvent in the mobile phase for easy, rapid transfer to a more sustainable normal phase or reversed-phase liquid chromatography. The main focus of this review will be on describing the transfer of non-green to green and white chromatographic methods in an effort to elevate sustainability best practices in analytical chemistry. The greenness properties and greenness ranking, in addition to the chromatographic suitability of seventeen organic solvents for liquid chromatography, are mentioned to have a clear insight into the issue of rapidly choosing the appropriate solvent to transfer a classical HPLC or UHPLC method into a more sustainable one. A simple guide is proposed for making the liquid chromatographic method more sustainable.
Keyphrases
- simultaneous determination
- liquid chromatography
- tandem mass spectrometry
- high performance liquid chromatography
- mass spectrometry
- high resolution mass spectrometry
- ionic liquid
- ultra high performance liquid chromatography
- solid phase extraction
- gas chromatography
- healthcare
- primary care
- ms ms
- high resolution
- public health
- working memory
- water soluble