Login / Signup

Species interactions and eco-evolutionary dynamics of dispersal: the diversity dependence of dispersal.

Dries BonteSally KeithEmanuel A Fronhofer
Published in: Philosophical transactions of the Royal Society of London. Series B, Biological sciences (2024)
Dispersal plays a pivotal role in the eco-evolutionary dynamics of spatially structured populations, communities and ecosystems. As an individual-based trait, dispersal is subject to both plasticity and evolution. Its dependence on conditions and context is well understood within single-species metapopulations. However, species do not exist in isolation; they interact locally through various horizontal and vertical interactions. While the significance of species interactions is recognized for species coexistence and food web functioning, our understanding of their influence on regional dynamics, such as their impact on spatial dynamics in metacommunities and meta-food webs, remains limited. Building upon insights from behavioural and community ecology, we aim to elucidate biodiversity as both a driver and an outcome of connectivity. By synthesizing conceptual, theoretical and empirical contributions from global experts in the field, we seek to explore how a more mechanistic understanding of diversity-dispersal relationships influences the distribution of species in spatially and temporally changing environments. Our findings highlight the importance of explicitly considering interspecific interactions as drivers of dispersal, thus reshaping our understanding of fundamental dynamics including species coexistence and the emergent dynamics of metacommunities and meta-ecosystems. We envision that this initiative will pave the way for advanced forecasting approaches to understanding biodiversity dynamics under the pressures of global change. This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.
Keyphrases
  • genetic diversity
  • healthcare
  • genome wide
  • climate change
  • dna methylation
  • white matter
  • functional connectivity
  • human health
  • quality improvement
  • resting state