Login / Signup

A single bout of moderate intensity exercise improves cognitive flexibility: evidence from task-switching.

Diksha ShuklaZain Al-ShamilGlen BelfryMatthew Heath
Published in: Experimental brain research (2020)
Executive function entails the core components of response  inhibition, working memory and cognitive flexibility. An accumulating literature has shown that a single bout of exercise improves the response inhibition  and working memory components of executive function; however, limited work has examined a putative exercise-related improvement to cognitive flexibility. To address this limitation, Experiment 1 entailed a 20-min session of moderate intensity aerobic exercise (via cycle ergometer), and pre- and post-exercise cognitive flexibility was examined via a task-switching paradigm involving alternating pro- and antisaccades (AABB: A = prosaccade, B = antisaccade). In Experiment 2, participants sat on the cycle ergometer without exercising (i.e., rest break) and the same AABB paradigm was examined pre- and post-break. We used an AABB pro- and antisaccade paradigm because previous work has shown that a prosaccade preceded by an antisaccade exhibits a reliable-and large magnitude-increase in reaction time, whereas the converse switch does not (i.e., the unidirectional prosaccade switch-cost). Experiment 1 showed a unidirectional prosaccade switch-cost pre-exercise (p = .012)-but not post-exercise (p = .30), and a two one-sided t test indicated that the latter comparison was within an equivalence boundary (p < .01). In contrast, Experiment 2 revealed a unidirectional prosaccade switch-cost at pre- and post-break assessments (ps < .01). Accordingly, our results indicate that a single bout of exercise improves cognitive flexibility and provides convergent evidence that exercise improves global components of executive function.
Keyphrases
  • high intensity
  • working memory
  • resistance training
  • physical activity
  • magnetic resonance imaging
  • single cell
  • clinical evaluation