Login / Signup

Quantum to Classical Cavity Chemistry Electrodynamics.

Leonardo F CalderónHumberto TriviñoLeonardo A Pachon
Published in: The journal of physical chemistry letters (2023)
Polaritonic chemistry has ushered in new avenues for controlling molecular dynamics. However, two key questions remain: (i) Can classical light sources elicit the same effects as certain quantum light sources on molecular systems? (ii) Can semiclassical treatments of light-matter interactions capture nontrivial quantum effects observed in molecular dynamics? This work presents a quantum-classical approach addressing issues of realizing cavity chemistry effects without actual cavities. It also highlights the limitations of the standard semiclassical light-matter interaction. It is demonstrated that classical light sources can mimic quantum effects up to the second order of light-matter interaction provided that the mean-field contribution, the symmetrized two-time correlation function, and the linear response function are the same in both situations. Numerical simulations show that the quantum-classical method aligns more closely with exact quantum molecular-only dynamics for quantum light states such as Fock states, superpositions of Fock states, and vacuum squeezed states than does the conventional semiclassical approach.
Keyphrases
  • molecular dynamics
  • density functional theory
  • drinking water
  • monte carlo
  • energy transfer
  • neural network