Enhanced Spatial Mapping of Histone Proteoforms in Human Kidney Through MALDI-MSI by High-Field UHMR-Orbitrap Detection.
Kevin J ZemaitisDušan VeličkovićWilliam R KewKyle L FortMaria Reinhardt-SzybaAnnapurna PamreddyYanli DingDharam KaushikKumar SharmaAlexander A MakarovMowei ZhouLjiljana Paša-TolićPublished in: Analytical chemistry (2022)
Core histones including H2A, H2B, H3, and H4 are key modulators of cellular repair, transcription, and replication within eukaryotic cells, playing vital roles in the pathogenesis of disease and cellular responses to environmental stimuli. Traditional mass spectrometry (MS)-based bottom-up and top-down proteomics allows for the comprehensive identification of proteins and of post-translational modification (PTM) harboring proteoforms. However, these methodologies have difficulties preserving near-cellular spatial distributions because they typically require laser capture microdissection (LCM) and advanced sample preparation techniques. Herein, we coupled a matrix-assisted laser desorption/ionization (MALDI) source with a Thermo Scientific Q Exactive HF Orbitrap MS upgraded with ultrahigh mass range (UHMR) boards for the first demonstration of complementary high-resolution accurate mass (HR/AM) measurements of proteoforms up to 16.5 kDa directly from tissues using this benchtop mass spectrometer. The platform achieved isotopic resolution throughout the detected mass range, providing confident assignments of proteoforms with low ppm mass error and a considerable increase in duty cycle over other Fourier transform mass analyzers. Proteoform mapping of core histones was demonstrated on sections of human kidney at near-cellular spatial resolution, with several key distributions of histone and other proteoforms noted within both healthy biopsy and a section from a renal cell carcinoma (RCC) containing nephrectomy. The use of MALDI-MS imaging (MSI) for proteoform mapping demonstrates several steps toward high-throughput accurate identification of proteoforms and provides a new tool for mapping biomolecule distributions throughout tissue sections in extended mass ranges.
Keyphrases
- mass spectrometry
- high resolution
- liquid chromatography
- gas chromatography
- capillary electrophoresis
- high performance liquid chromatography
- high throughput
- tandem mass spectrometry
- renal cell carcinoma
- high speed
- high resolution mass spectrometry
- endothelial cells
- multiple sclerosis
- ultra high performance liquid chromatography
- small molecule
- induced apoptosis
- gene expression
- risk assessment
- heat shock protein
- single cell
- ms ms
- pi k akt
- robot assisted
- loop mediated isothermal amplification