3D multicellular micropatterning biomaterials for hair regeneration and vascularization.
Jingge MaChen QinJinfu WuHui ZhuangLin DuJinfu XuChengtie WuPublished in: Materials horizons (2023)
Hair loss caused by the abnormal functions of hair follicles in skin can seriously impact the quality of an individual's life. The development of sophisticated skin tissue-engineered constructs is required to enable the function recovery of hair follicles. However, effective hair regrowth in skin substitutes still remains a great challenge. In this study, a 3D multicellular micropattern was successfully fabricated by arranging the hair follicle-related cells orderly distributed in the interval of vascular-cell networks via bioprinting technology. By combining the stable biomimetic micropattern structure and the bio-inducing substrate incorporated with magnesium silicate (MS) nanomaterials, the 3D multicellular micropattern possessed significant follicular potential and angiogenic capacity in vitro . Furthermore, the 3D multicellular micropattern with MS incorporation contributed to efficient hair regrowth during skin tissue regeneration in both immunodeficient mice and androgenetic alopecia (AGA) mice models. Thus, this study proposes a novel 3D micropatterned multicellular system assembling a biomimetic micro-structure and modulating the cell-cell interaction for hair regeneration during skin reconstruction.
Keyphrases