Exposure of Cultured Astrocytes to Menadione Triggers Rapid Radical Formation, Glutathione Oxidation and Mrp1-Mediated Export of Glutathione Disulfide.
Johann SteinmeierRalf DringenPublished in: Neurochemical research (2019)
Menadione (2-methyl-1,4-naphthoquinone) is a synthetic derivative of vitamin K that allows rapid redox cycling in cells and thereby generates reactive oxygen species (ROS). To test for the consequences of a treatment of brain astrocytes with menadione, we incubated primary astrocyte cultures with this compound. Incubation with menadione in concentrations of up to 30 µM did not affect cell viability. In contrast, exposure of astrocytes to 100 µM menadione caused a time-dependent impairment of cellular metabolism and cell functions as demonstrated by impaired glycolytic lactate production and strong increases in the activity of extracellular lactate dehydrogenase and in the number of propidium iodide-positive cells within 4 h of incubation. In addition, already 5 min after exposure of astrocytes to menadione a concentration-dependent increase in the number of ROS-positive cells as well as a concentration-dependent and transient accumulation of cellular glutathione disulfide (GSSG) were observed. The rapid intracellular GSSG accumulation was followed by an export of GSSG that was prevented in the presence of MK571, an inhibitor of the multidrug resistance protein 1 (Mrp1). Menadione-induced glutathione (GSH) oxidation and ROS formation were found accelerated after glucose-deprivation, while the presence of dicoumarol, an inhibitor of the menadione-reducing enzyme NQO1, did not affect the menadione-dependent GSSG accumulation. Our study demonstrates that menadione rapidly depletes cultured astrocytes of GSH via ROS-induced oxidation to GSSG that is subsequently exported via Mrp1.
Keyphrases
- reactive oxygen species
- induced apoptosis
- cell cycle arrest
- cell death
- dna damage
- hydrogen peroxide
- stem cells
- multiple sclerosis
- adipose tissue
- endoplasmic reticulum stress
- mesenchymal stem cells
- oxidative stress
- computed tomography
- single cell
- white matter
- nitric oxide
- bone marrow
- pi k akt
- blood glucose
- binding protein
- smoking cessation
- blood brain barrier