Login / Signup

Bacterial Biofilm Bioinspired Persistent Luminescence Nanoparticles with Gut-Oriented Drug Delivery for Colorectal Cancer Imaging and Chemotherapy.

Zhi-Hao WangJing-Min LiuChun-Yang LiDi WangHuan LvShi-Wen LvNing ZhaoHui MaShuo Wang
Published in: ACS applied materials & interfaces (2019)
Colorectal cancer (CRC) is now one of the leading causes of cancer incidence and mortality. Although nanomaterial-based drug delivery has been used for the treatment of colorectal cancer, inferior targeting ability of existing nanocarriers leads to inefficient treatment and side effects. Moreover, the majority of intravenously administered nanomaterials aggregate into the reticuloendothelial system, leaving a certain hidden risk to human health. All those problems gave great demands for further construction of well-performed and biocompatible nanomaterials for in vivo theranostics. In the present work, from a biomimetic point of view, Lactobacillus reuteri biofilm (LRM) was coated on the surface of trackable zinc gallogermanate (ZGGO) near-infrared persistent luminescence mesoporous silica to create the bacteria bioinspired nanoparticles (ZGGO@SiO2@LRM), which hold the inherent capability of withstanding the digestion of gastric acid and targeted release 5-FU to colorectum. Through the background-free persistent luminescence bioimaging of ZGGO, the coating of LRM facilitated the localization of ZGGO@SiO2@LRM to the tumor area of colorectum for more than 24 h after intragastric administration. Furthermore, ZGGO@SiO2@LRM hardly entered the blood, which avoided possible damage to immune organs such as the liver and spleen. In vivo chemotherapy experiment demonstrated the number of tumors per mouse in ZGGO@SiO2@LRM group decreased by one-half compared with the 5-FU group (P < 0.001). To sum up, this LRM bioinspired nanoparticles could tolerate the digestion of gastric acid, avoid aggregation by the immune system, favor gut-oriented drug delivery, and targeted release oral 5-FU into colorectum for more than 24 h, which may give new application prospects for targeted delivery of oral drugs into the colorectum.
Keyphrases