Login / Signup

Sleep Disrupts High-Level Speech Parsing Despite Significant Basic Auditory Processing.

Shiri MakovOmer SharonNai DingMichal Ben-ShacharYuval NirElana Zion Golumbic
Published in: The Journal of neuroscience : the official journal of the Society for Neuroscience (2017)
The extent to which the sleeping brain processes sensory information remains unclear. This is particularly true for continuous and complex stimuli such as speech, in which information is organized into hierarchically embedded structures. Recently, novel metrics for assessing the neural representation of continuous speech have been developed using noninvasive brain recordings that have thus far only been tested during wakefulness. Here we investigated, for the first time, the sleeping brain's capacity to process continuous speech at different hierarchical levels using a newly developed Concurrent Hierarchical Tracking (CHT) approach that allows monitoring the neural representation and processing-depth of continuous speech online. Speech sequences were compiled with syllables, words, phrases, and sentences occurring at fixed time intervals such that different linguistic levels correspond to distinct frequencies. This enabled us to distinguish their neural signatures in brain activity. We compared the neural tracking of intelligible versus unintelligible (scrambled and foreign) speech across states of wakefulness and sleep using high-density EEG in humans. We found that neural tracking of stimulus acoustics was comparable across wakefulness and sleep and similar across all conditions regardless of speech intelligibility. In contrast, neural tracking of higher-order linguistic constructs (words, phrases, and sentences) was only observed for intelligible speech during wakefulness and could not be detected at all during nonrapid eye movement or rapid eye movement sleep. These results suggest that, whereas low-level auditory processing is relatively preserved during sleep, higher-level hierarchical linguistic parsing is severely disrupted, thereby revealing the capacity and limits of language processing during sleep.SIGNIFICANCE STATEMENT Despite the persistence of some sensory processing during sleep, it is unclear whether high-level cognitive processes such as speech parsing are also preserved. We used a novel approach for studying the depth of speech processing across wakefulness and sleep while tracking neuronal activity with EEG. We found that responses to the auditory sound stream remained intact; however, the sleeping brain did not show signs of hierarchical parsing of the continuous stream of syllables into words, phrases, and sentences. The results suggest that sleep imposes a functional barrier between basic sensory processing and high-level cognitive processing. This paradigm also holds promise for studying residual cognitive abilities in a wide array of unresponsive states.
Keyphrases