Hydrogeochemical assessment and health-related risks due to toxic element ingestion and dermal contact within the Nnewi-Awka urban areas, Nigeria.
Michael Ekuru OmekaJohnbosco C EgbueriPublished in: Environmental geochemistry and health (2022)
Awka and Nnewi metropolises are known for intensive socioeconomic activities that could predispose the available groundwater to pollution. In this paper, an integrated investigation of the drinking water quality and associated human health risks of contaminated groundwater was carried out using geochemical models, numerical water quality models, and the HHRISK code. Physicochemical analysis revealed that the groundwater pH is acidic. Predicted results from PHREEQC model showed that most of the major chemical and trace elements occurred as free mobile ions while a few were bounded to their various hydrated, oxides and carbonate phases. This may have limited their concentration in the groundwater; implying that apart from anthropogenic influx, the metals and their species also occur in the groundwater as a result of geogenic processes. The PHREEQC-based insights were also supported by joint multivariate statistical analyses. Groundwater quality index, pollution index of groundwater, heavy metal toxicity load, and heavy metal evaluation index revealed that 60-70% of the groundwater samples within the two metropolises are unsuitable for drinking as a result of anthropogenic influx, with Pb and Cd identified as the priority elements influencing the water quality. The HHRISK code evaluated the ingestion and dermal exposure pathway of the consumption of contaminated water for children and adult. Results revealed that groundwater from both areas poses a very high chronic and carcinogenic risk from ingestion than dermal contact with the children population showing greater vulnerability. Aggregated and cumulative HHRISK coefficients identified Cd, Pb, and Cu, to have the highest health impact on the groundwater quality of both areas; with residents around Awka appearing to be at greater risks. There is, therefore, an urgent need for the adoption of a state-of-the-art waste management and water treatment strategies to ensure safe drinking water for the public.
Keyphrases