Login / Signup

Negative cooperativity upon hydrogen bond-stabilized O2 adsorption in a redox-active metal-organic framework.

Julia OktawiecHenry Z H JiangJenny G VitilloDouglas A ReedLucy E DaragoBenjamin A TrumpVarinia BernalesHarriet LiKristen A ColwellHiroyasu FurukawaCraig M BrownLaura GagliardiJeffrey R Long
Published in: Nature communications (2020)
The design of stable adsorbents capable of selectively capturing dioxygen with a high reversible capacity is a crucial goal in functional materials development. Drawing inspiration from biological O2 carriers, we demonstrate that coupling metal-based electron transfer with secondary coordination sphere effects in the metal-organic framework Co2(OH)2(bbta) (H2bbta = 1H,5H-benzo(1,2-d:4,5-d')bistriazole) leads to strong and reversible adsorption of O2. In particular, moderate-strength hydrogen bonding stabilizes a cobalt(III)-superoxo species formed upon O2 adsorption. Notably, O2-binding in this material weakens as a function of loading, as a result of negative cooperativity arising from electronic effects within the extended framework lattice. This unprecedented behavior extends the tunable properties that can be used to design metal-organic frameworks for adsorption-based applications.
Keyphrases
  • metal organic framework
  • electron transfer
  • aqueous solution
  • room temperature
  • gold nanoparticles
  • carbon nanotubes
  • genetic diversity