Login / Signup

Ultra-Flexible Organic Solar Cell Based on Indium-Zinc-Tin Oxide Transparent Electrode for Power Source of Wearable Devices.

Jun Young ChoiIn Pyo ParkSoo Won Heo
Published in: Nanomaterials (Basel, Switzerland) (2021)
We have developed a novel structure of ultra-flexible organic photovoltaics (UFOPVs) for application as a power source for wearable devices with excellent biocompatibility and flexibility. Parylene was applied as an ultra-flexible substrate through chemical vapor deposition. Indium-zinc-tin oxide (IZTO) thin film was used as a transparent electrode. The sputtering target composed of 70 at.% In2O3-15 at.% ZnO-15 at.% SnO2 was used. It was fabricated at room temperature, using pulsed DC magnetron sputtering, with an amorphous structure. UFOPVs, in which a 1D grating pattern was introduced into the hole-transport and photoactive layers were fabricated, showed a 13.6% improvement (maximum power conversion efficiency (PCE): 8.35%) compared to the reference device, thereby minimizing reliance on the incident angle of the light. In addition, after 1000 compression/relaxation tests with a compression strain of 33%, the PCE of the UFOPVs maintained a maximum of 93.3% of their initial value.
Keyphrases