Embryonic cardioprotection by hydrogen sulphide: studies of isolated cardiac function and ischaemia-reperfusion injury in the chicken embryo.
Rita M HessYouguo NiuTessa A C GarrudKimberley J BottingSage G FordDino A GiussaniPublished in: The Journal of physiology (2020)
This study adapted the isolated Langendorff preparation to study the chicken embryo heart in response to ischaemia-reperfusion (IR) injury. The utility of the technique was tested by investigating cardioprotective effects of hydrogen sulphide (H2 S) and underlying mechanisms. Embryonic hearts (19 out of 21 days of incubation) mounted on a Langendorff preparation were exposed to IR (30 min ischaemia) after 4 treatments administered randomly, all as a 1 mm bolus, into the perfusate: saline vehicle (control); sodium hydrogen sulphide (NaHS); NaHS plus glibenclamide, an antagonist of KATP opening (NaHS Glib), and Glib alone (Glib). Relative to controls, NaHS treatment improved cardiac function after ischaemia (mean ± SD for area under the curve, AUC, for left ventricular developed pressure, LVDP: 1767.3 ± 929.5 vs. 492.7 ± 308.1; myocardial contractility, dP/dtmax : 2748.9 ± 1514.9 vs. 763.7 ± 433.1) and decreased infarct size (22.7 ± 8.0 vs. 43.9 ± 4.2%) and cardiac damage (% change in creatinine kinase, 49.3 ± 41.3 vs. 214.6 ± 155.1; all P < 0.05). Beneficial effects of NaHS were blocked by Glib. Glib alone had no effects. NaHS increased coronary flow rate (CFR) during baseline (mean ± SD for AUC: 134.3 ± 91.6 vs. 92.2 ± 35.8) and post IR (1467 ± 529.5 vs. 748.0 ± 222.1; both P < 0.05). However, this effect was not prevented by Glib. Therefore, the chicken embryo heart is amenable for study via the Langendorff preparation under basal conditions and during IR. The data show that H2 S confers embryonic cardiac protection via opening of myocardial KATP channels and not via increasing CFR. H2 S may prove a useful therapeutic agent to protect the human fetal heart against IR injury, as may occur in complicated labour.
Keyphrases
- left ventricular
- heart failure
- acute myocardial infarction
- coronary artery disease
- endothelial cells
- atrial fibrillation
- oxidative stress
- coronary artery
- blood brain barrier
- pregnant women
- hypertrophic cardiomyopathy
- machine learning
- aortic stenosis
- metabolic syndrome
- high resolution
- cerebral ischemia
- acute coronary syndrome
- brain injury
- big data
- ejection fraction
- smoking cessation