Login / Signup

Large Amplitude Motions of Pyruvic Acid (CH3-CO-COOH).

María Luisa SenentSamira Dalbouha
Published in: Molecules (Basel, Switzerland) (2021)
Torsional and rotational spectroscopic properties of pyruvic acid are determined using highly correlated ab initio methods and combining two different theoretical approaches: Second order perturbation theory and a variational procedure in three-dimensions. Four equilibrium geometries of pyruvic acid, Tc, Tt, Ct, and CC, outcome from a search with CCSD(T)-F12. All of them can be classified in the Cs point group. The variational calculations are performed considering the three internal rotation modes responsible for the non-rigidity as independent coordinates. More than 50 torsional energy levels (including torsional subcomponents) are localized in the 406-986 cm-1 region and represent excitations of the ν24 (skeletal torsion) and the ν23 (methyl torsion) modes. The third independent variable, the OH torsion, interacts strongly with ν23. The A1/E splitting of the ground vibrational state has been evaluated to be 0.024 cm-1 as it was expected given the high of the methyl torsional barrier (338 cm-1). A very good agreement with respect to previous experimental data concerning fundamental frequencies (νCAL - νEXP ~ 1 cm-1), and rotational parameters (B0CAL - B0EXP < 5 MHz), is obtained.
Keyphrases
  • molecular dynamics simulations
  • density functional theory
  • molecular dynamics
  • computed tomography
  • magnetic resonance
  • machine learning
  • dual energy
  • functional connectivity
  • resting state
  • data analysis