Login / Signup

Hierarchical 3D Flower-like Metal Oxides Micro/Nanostructures: Fabrication, Surface Modification, Their Crucial Role in Environmental Decontamination, Mechanistic Insights, and Future Perspectives.

Kanika SolankiShivani SharmaSneha YadavBhawna KaushikPooja RanaRanjana DixitRakesh Kumar Sharma
Published in: Small (Weinheim an der Bergstrasse, Germany) (2023)
Hierarchical micro/nanostructures are constructed by micro-scaled objects with nanoarchitectures belonging to an interesting class of crystalline materials that has significant applications in diverse fields. Featured with a large surface-to-volume ratio, facile mass transportation, high stability against aggregation, structurally enhanced adsorption, and catalytical performances, three dimenisional (3D) hierarchical metal oxides have been considered as versatile functional materials for waste-water treatment. Due to the ineffectiveness of traditional water purification protocols for reclamation of water, lately, the use of hierarchical metal oxides has emerged as an appealing platform for the remediation of water pollution owing to their fascinating and tailorable physiochemical properties. The present review highlights various approaches to the tunable synthesis of hierarchical structures along with their surface modification strategies to enhance their efficiencies for the removal of different noxious substances. Besides, their applications for the eradication of organic and inorganic contaminants have been discussed comprehensively with their plausible mechanistic pathways. Finally, overlooked aspects in this field as well as the major roadblocks to the implementation of these metal oxide architectures for large-scale treatment of wastewater are provided here. Moreover, the potential ways to tackle these issues are also presented which may be useful for the transformation of current water treatment technologies.
Keyphrases
  • heavy metals
  • primary care
  • high resolution
  • human health
  • wastewater treatment
  • drinking water
  • combination therapy
  • climate change
  • gold nanoparticles
  • quantum dots
  • water soluble
  • tissue engineering