Login / Signup

Enantioselective Detection, Bioactivity, and Metabolism of the Novel Chiral Insecticide Fluralaner.

Zhaoxian ZhangLiangliang ZhouYingying GaoJing ZhangBeibei GaoHaiyan ShiMinghua Wang
Published in: Journal of agricultural and food chemistry (2020)
Fluralaner, a veterinary drug, is a potential chiral isoxazoline insecticide possessing high insecticidal and acaricidal activity. However, there is little information regarding the enantioselective effect of fluralaner. In this work, a promising chiral detection method was established with liquid chromatography-mass spectrometry in agricultural products and animal organs to investigate enantioselective metabolism and bioactivity. The optical rotation and absolute configuration of fluralaner enantiomers were confirmed with S-(+)-fluralaner and R-(-)-fluralaner. The bioactivity assay indicated that S-fluralaner was 33-39 times more active than the R-enantiomer against Chilo suppressalis and Laodelphax striatellus. This finding suggests that the application of pure S-fluralaner instead of racemate in agricultural management could reduce risk. Homology modeling and molecular docking showed that S-fluralaner, with a lower energy of -6.90 kcal/mol, possessed better binding affinity to the γ-aminobutyric acid receptor. The stereoselective metabolism in rat liver microsomes was explored, and slight enantioselectivity was observed with R-fluralaner that was preferentially metabolized. The enantiomer fraction values ranged from 0.43 to 0.49. The results provide reference for residue detection, risk assessment, and the scientific use of fluralaner in agricultural applications.
Keyphrases