Core-Satellite Nanoassemblies as SPR/SERS Dual-Mode Plasmonic Sensors for Sensitively Detecting Ractopamine in Complex Media.
Liqin ZhengFan HuYueyue ZhaoJuanjuan ZhuXian WangMengke SuHonglin LiuPublished in: Journal of agricultural and food chemistry (2023)
Highly sensitive and reliable detection of β-adrenergic agonists is especially necessary due to the illegal abuse of growth-promoting feed additives. Here, we develop a novel surface plasmon resonance/surface-enhanced Raman scattering (SPR/SERS) dual-mode plasmonic sensor based on core-satellite nanoassemblies for the highly sensitive and reliable detection of ractopamine (RAC). The addition of RAC results in the decomposition of core-satellite nanoassemblies and consequently changes the Rayleigh scattering color of dark-field microscopy (DFM) images and the Raman scattering intensity of SERS spectra. The excellent sensitivity, specificity, and uniformity of this strategy were confirmed by detecting RAC in various complex media in the farm-to-table chain, and the limit of detection (LOD) was 0.03 ng/mL in an aqueous solution. In particular, the convenient access to livestock sewage not only ensures animal welfare but also provides great convenience for the market regulation of β-agonists. The success of our on-site strategy only with a portable Raman device promises great application prospects for β-agonist detection.