Login / Signup

Intensive and Persistent Chemiluminescence System Based on Nano-/Bioenzymes with Local Tandem Catalysis and Surface Diffusion.

Pengyun DangXuan LiuHuangxian JuJie Wu
Published in: Analytical chemistry (2020)
A chemiluminescence (CL) system with long persistent and intensive emission is essential for accurate CL quantitative analysis and imaging assay. However, with most known CL systems being flash-type, it is still a great challenge to develop long-lasting CL systems. Here, by combining an iron porphyrin metal-organic frameworks (FePorMOFs) based peroxidase mimic with natural glucose oxidase (GOx), an intensive and persistent CL system is presented on the basis of local tandem catalysis and surface diffusion of the nano-/bioenzymes (FePorMOF/GOx). FePorMOF synthesized by iron porphyrin linker and zirconium ion node possesses high peroxidase catalytic activity and stability. Using luminol and glucose as substrate, the FePorMOF/GOx CL system can produce intensive CL emission containing a plateau period of 7.5 h. The strong CL signal is due to the local tandem generation and reaction of H2O2 by GOx and FePorMOF, which avoids the diffusion-limited kinetics and leads to a high catalytic efficiency of the nano-/bioenzymes. On the other hand, the long persistent CL emission is attributed mainly to the enzymatic reaction-controlled H2O2 supply and surface diffusion-controlled CL reaction. The proposed CL system is explored for CL imaging sensing of glucose and homogeneous immunoassay of α-fetoprotein. The nano-/bioenzymes CL system exhibits intensive and long constant CL emission in physiological condition, showing promising applications in real-time bioassay and bioimaging.
Keyphrases
  • hydrogen peroxide
  • photodynamic therapy
  • type diabetes
  • adipose tissue
  • lymph node
  • metal organic framework
  • metabolic syndrome
  • high throughput
  • amino acid