Login / Signup

Synthesis and Emergent Photophysical Properties of Diketopyrrolopyrrole-Based Supramolecular Self-Assembly.

Nilabja MaityKanad MajumderArun Kumar PatelDiptikanta SwainNagarajarao SuryaprakashSatish Patil
Published in: ACS omega (2022)
Diketopyrrolopyrrole (DPP)-based molecular semiconductors exhibit intriguing optical and charge transport properties. Herein, we rationally design a series of electronically identical but structurally distinct Hamilton receptor (HR)-based supramolecular assembly of DPP. The HR endows supramolecular assemblies via hydrogen bonding with enhanced structural ordering and excitonic couplings. The mechanism of supramolecular self-assembly was probed by diffusion ordered spectroscopy (DOSY) nuclear magnetic resonance (NMR) and solid-state IR spectroscopy studies. We investigated the morphology of self-assembly, photophysical and electrochemical properties and compared them with the identical DPP molecular structures without HRs. The microstructure of self-assembly was probed with atomic force microscopy in thin films. Subsequently, the influence of solid-state packing was studied by single-crystal X-ray diffraction. The single-crystal structure of HR-TDPP-C 20 reveals slipped stack arrangements between the two neighboring chromophores with π-π stacking distance and slip angle of 3.55 Å and 35.4°, respectively. Notably, the slight torsional angle of 1° between thiophene and lactam rings and small π-π stacking distance suggest a significant intermolecular coupling between thiophene (D) and lactam (A) rings. This intramolecular coupling between two π-π chromophore stacks manifests in their optical properties. In this manuscript, we report rational design and synthesis of supramolecular self-assembly of DPP with a collection of compelling structural and optical properties.
Keyphrases