Login / Signup

In situ formed zinc oxide/graphitic carbon nitride nanohybrid for the electrochemical determination of 4-nitrophenol.

Kizhepat ShamsaPeter Selvaraj Mary RajaithaSelvaraj VinothChinnan MuruganPerumal RameshkumarAntonysamy Soundarya Mary
Published in: Mikrochimica acta (2020)
The electrochemical determination of 4-nitrophenol using a nanohybrid consisting of glassy carbon (GC) and zinc oxide/graphitic carbon nitride (ZnO/g-CN nanosheet), is described. The ZnO/g-CN nanohybrid was in situ synthesized by chemical method and well characterized using absorption spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopic analysis. It was observed that the nanosized ZnO particles were present inside the sheet-like g-CN nanostructure. The nanohybrid-modified electrode showed an enhanced electrocatalytic response for 4-nitrophenol reduction compared with the bare GC electrode. The assay exhibited linear ranges of 13.4-100 μM and 100-1000 μM for 4-NP determination. The limit of detection and limit of quantification were 4.0 and 13.4 μM, respectively, at the working potential of - 0.85 V. An appreciable precision was found towards the stability of the assay in the determination. It provides selectivity against inorganic and organic substances such as calcium chloride, potassium chloride, nitrobenzene, uric acid, 1-chloro,2,4-dinitrobenzene, 1-bromo,2-nitrobenzene and 1-iodo,2-nitrobenzene. The practical applicability of the assay was also checked in the analysis of real water samples and satisfactory recovery of 4-NP was found. Schematic representation of the synthesis of zinc oxide (ZnO) nanostructures incorporated graphitic carbon nitride nanosheets (g-C3N4 NSs) and its application in the voltammetric determination of 4-nitrophenol (4-NP) is presented. The nanohybrid assay showed selectivity among coexisting compounds and good recovery in real sample analysis.
Keyphrases