A Competition of Critics in Human Decision-Making.
Enkhzaya EnkhtaivanJoel NishimuraCheng LyAmy L CochranPublished in: Computational psychiatry (Cambridge, Mass.) (2021)
Recent experiments and theories of human decision-making suggest positive and negative errors are processed and encoded differently by serotonin and dopamine, with serotonin possibly serving to oppose dopamine and protect against risky decisions. We introduce a temporal difference (TD) model of human decision-making to account for these features. Our model involves two critics, an optimistic learning system and a pessimistic learning system, whose predictions are integrated in time to control how potential decisions compete to be selected. Our model predicts that human decision-making can be decomposed along two dimensions: the degree to which the individual is sensitive to (1) risk and (2) uncertainty. In addition, we demonstrate that the model can learn about the mean and standard deviation of rewards, and provide information about reaction time despite not modeling these variables directly. Lastly, we simulate a recent experiment to show how updates of the two learning systems could relate to dopamine and serotonin transients, thereby providing a mathematical formalism to serotonin's hypothesized role as an opponent to dopamine. This new model should be useful for future experiments on human decision-making.