Prenatal SSRI Exposure Increases the Risk of Autism in Rodents via Aggravated Oxidative Stress and Neurochemical Changes in the Brain.
Ramesa Shafi BhatMona A AlonaziSooad Al-DaihanAfaf El-AnsaryPublished in: Metabolites (2023)
The mechanisms underlying selective serotonin reuptake inhibitor (SSRI) use during pregnancy as a major autism risk factor are unclear. Here, brain neurochemical changes following fluoxetine exposure and in an autism model were compared to determine the effects on autism risk. The study was performed on neonatal male western albino rats which were divided into Groups one (control), two (propionic acid [PPA]-induced autism model), and three (prenatal SSRI-exposed newborn rats whose mothers were exposed to 5 mg/kg of fluoxetine over gestation days 10-20). SSRI (fluoxetine) induced significant neurochemical abnormalities in the rat brain by increasing lipid peroxide (MDA), Interferon-gamma (IFN-γ), and caspase-3 levels and by depleting Glutathione (GSH), Glutathione S-transferases (GST), Catalase, potassium (K+), and Creatine kinase (CK) levels, similarly to what has been discovered in the PPA model of autism when compared with control. Prenatal fluoxetine exposure plays a significant role in asset brain damage in newborns; further investigation of fluoxetine as an autism risk factor is thus warranted.