Login / Signup

Dipole Effects on Electron Transfer are Enormous.

Maciej KrzeszewskiEli Misael EspinozaCtirad ČervinkaJames Bennett DerrJohn Anthony ClarkDan BorchardtGregory J O BeranDaniel T GrykoValentine Ivanov Vullev
Published in: Angewandte Chemie (International ed. in English) (2018)
Molecular dipoles present important, but underutilized, methods for guiding electron transfer (ET) processes. While dipoles generate fields of Gigavolts per meter in their vicinity, reported differences between rates of ET along versus against dipoles are often small or undetectable. Herein we show unprecedentedly large dipole effects on ET. Depending on their orientation, dipoles either ensure picosecond ET, or turn ET completely off. Furthermore, favorable dipole orientation makes ET possible even in lipophilic medium, which appears counterintuitive for non-charged donor-acceptor systems. Our analysis reveals that dipoles can substantially alter the ET driving force for low solvent polarity, which accounts for these unique trends. This discovery opens doors for guiding forward ET processes while suppressing undesired backward electron transduction, which is one of the holy grails of photophysics and energy science.
Keyphrases
  • public health
  • electron transfer
  • small molecule
  • single molecule
  • solar cells
  • signaling pathway
  • sensitive detection
  • living cells
  • high throughput
  • single cell