Login / Signup

One-Pot Assembly of Mannose-Capped Lipoarabinomannan Motifs up to 101-Mer from the Mycobacterium tuberculosis Cell Wall.

Yuxin MaYunqin ZhangYingying HuangZixi ChenQingyun XianRui SuQiong JiangXiufang WangGuozhi Xiao
Published in: Journal of the American Chemical Society (2024)
Lipoarabinomannan (LAM) from the Mycobacterium tuberculosis cell envelope represents important targets for the development of new therapeutic agents against tuberculosis, which is a deadly disease that has plagued mankind for a long time. However, the accessibility of long, branched, and complex lipoarabinomannan over 100-mer remains a long-standing challenge. Herein, we report the modular synthesis of mannose-capped lipoarabinomannan 101-mer from the M. tuberculosis cell wall using a one-pot assembly strategy on the basis of glycosyl ortho -(1-phenylvinyl)benzoates (PVB), which not only accelerates the modular synthesis but also precludes the potential problems associated with one-pot glycosylation with thioglycosides. Shorter sequences including 18-mer, 19-mer, and 27-mer are also synthesized for in-depth structure-activity relationship biological studies. Current synthetic routes also highlight the following features: (1) streamlined synthesis of various linear and branched glycans using one-pot orthogonal glycosylation on the combination of glycosyl N -phenyltrifluoroacetimidates, glycosyl ortho -alkynylbenzoates, and glycosyl PVB; (2) highly stereoselective construction of 10 1,2- cis -arabinofuranosyl linkages using 5- O -(2-quinolinecarbonyl)-directing 1,2- cis -arabinofuranosylation via a hydrogen-bond-mediated aglycone delivery strategy; and (3) convergent [(18 + 19) × 2 + 27] one-pot synthesis of the 101-mer LAM polysaccharide. The present work demonstrates that this orthogonal one-pot glycosylation strategy can highly streamline the chemical synthesis of long, branched, and complex polysaccharides.
Keyphrases